The Capability of Sailing Warships: Manoeuvrability

Sam Willis

Dans cet article, S.B.A. Willis continue à faire son enquête sur le potentiel des navires de guerre à voile en réfléchissant à la question de la manière de manœuvrer. En faisant référence à des sources contemporaines, l'auteur considère les aspects significatifs de la performance d'un navire de guerre à voile que jusqu'à présent les historiens de la navigation de guerre ont négligés ou ont mal compris.

Part 1 of this article warned of the inherent dangers of accepting an easily digestible and simplistic vision of sailing capability and explained in some detail the practicalities of making ground to windward in a sailing warship. An incapacity to make ground to windward was not, however, the only significant characteristic of wind dependence. Unfortunately, very few historians of sailing warfare have considered sailing warship capability beyond the question of windward performance, and there remains much of significance that is not widely known. With our accepted understanding so dominated by the question of windward performance, it has been all too easy to associate negative connotations with the broader question of sailing warship capability.

It is, furthermore, a sad fact that the only characteristics of sailing warship capability that are generally understood are those that are based on a superficial comparison with steamships. A steamship has an engine that provides head or sternway and a rudder that controls lateral movement. Maritime historians have repeatedly used this template to understand the sailing ship, simply regarding the sailing rig as the direct equivalent of the engine. Thus they see the ability of the steamship to go anywhere at any time replacing the restrictions of wind-dependence.

This is the root of a serious misunderstanding which arises from the common methodological flaw of attempting to compare the incomparable: it fails to appreciate the sailing ship for what it was, for how it was built and for how it worked in practice. As a result, the majority of historians have portrayed the performance capabilities of the sailing warship almost exclusively in a negative light. It is a peculiar approach indeed to write the history of sailing warships, indeed the history of sailing warfare, from an understanding of what sailing ships could not do, without an appreciation of what they could achieve, and yet that is the consistent pattern of the mainstream of maritime history.¹


The Northern Mariner/Le marin du nord, XIV No. 3 (July 2004), 57-68.
For all of these reasons, it is crucial that our understanding of sailing warship capability must expand beyond the question of windward performance, and it is the purpose of this article to help close that gap by investigating in greater depth the relationship between wind dependence, performance and capability.

The role of the sails in providing drive is the most obvious characteristic of wind dependence, but one which has not been considered in depth by historians. The visual complexity of the rig and the sheer quantity of canvas gives to the casual observer an impression of a cumbersome tool, an impression which seems to be confirmed by the evidence of contemporaries such as Admiral Latouche-Treville who recorded with pride how his squadron, in chase of Nelson, made all sail in fourteen minutes. This example, however, refers particularly to all sails being hoisted. In practice, a ship could get under way much more easily and quickly, simply by setting her topsails, or even the staysails alone.

Moreover, the sails themselves could be set in a very short time. Once a sail had been freed of its gaskets, it could be set in a flash from the comfort of the deck, simply by casting off the clewlines and buntlines and securing the sheets. If it was known in advance that sails might be needed quickly, the gaskets could be cast off and a temporary spiral of spun yarn used to hold the sail to the yard as if it was furled. At anchor in Basque Roads in 1762, Howe, anticipating a flash attack from the French with fireships, included a specific instruction for his fleet to furled their sails with yarns "in readiness for being set at the shortest warning." Cochrane was also particularly fond of the technique, and used it to great effect aboard the frigate Pallas in the spring of 1806. Short handed and isolated in the face of three hostile and inquisitive ships, he set all of his sail in a flash, giving the impression of a numerous and highly disciplined crew. The enemy ships fled.

As a more practical solution, rather than being set or stowed, sails could be left until they were next needed, hanging perfectly comfortably in their gear, secured by their clewlines which gathered the corners of the square sails diagonally up to the centre of the yard, and sometimes by their buntlines which gathered the foot of the sail vertically up to the yard (Fig.1). This sail plan was particularly useful in battle since it allowed captains to minimise the amount of canvas vulnerable to enemy shot, whilst enabling them to set the sails at very short notice and provide bursts of power whenever required. Similarly, the power of the sails could be killed simply by letting the sheets go. They could then be

---

Fig. 1: The fore-course is hauled up by the clews and bunts. Nicholas Pocock *HMS Triton and other vessels*. 1797. NMM BHC/3675
stowed quickly and efficiently by a well trained crew. At the court martial of Admiral John Byng for his conduct at the battle of Minorca in 1756, Byng's third lieutenant estimated that it would take only five minutes to strike and stow all of the topgallants and the staysails of the 90-gun flagship Ramillies.\footnote{The Trial of the Honourable John Byng at a Court Martial, (Dublin, 1757), 233.}

A captain not only had the ability to exert and remove pressure quickly in different parts of the rig, but he could also control the strength of that pressure by regulating the efficiency of each sail. It is often overlooked that sails did not have to be fully set to be effective nor fully stowed to be ineffective. The effectiveness of a sail was at its maximum when it was set at its full size and was properly trimmed,\footnote{J.H. Harland, Seamanship in the Age of Sail (London, 1985), 61-2.} but the size and trim could be altered in a number of ways.

Topsail reefs were introduced in about 1680 and the fore and main topsails were later fitted with four reef points of increasing depth, and the mizen with three. These enabled a captain to reduce the efficiency of each sail by varying degrees on a semi-permanent basis. Reef points - short ropes stitched on to each side of the sail - were used to create a temporary head of the sail by tying them together around the yard. The leeches of the sail were provided with cringles which allowed temporary head lashings to be tied at the level of each reef point (Fig. 2). In light winds a captain could also increase the efficiency of the courses beyond their maximum by adding a bonnet or drabbler - a strip of canvas secured to the foot of the course - a technique which originated in the 1500s but carried through well into the
The Capability of Sailing Warships: Manoeuvrability

Fig. 3: Bonnets (a) and drabbler (b) bent to the courses of a late sixteenth century ship. M. Myers in Harland, J.H., *Seamanship in the Age of Sail* (London, 1985), 75.

eighteenth century." (Fig. 3).

Other methods of reducing or increasing the relative efficiency of a sail were as effective as reefing and allowed more subtle control of drive. Moreover, these methods could be used quickly, at short notice and in all conditions, as they did not require men to work aloft. For example, a square sail could be partially set with only one clew sheeted home and the other remaining hauled up (Fig. 4, overleaf). There is evidence of this technique being used when cruising and in battle for both the loose-footed courses and the topsails. Sails that were set by hoisting could also be only partially hoisted, a quick and easy way of relatively increasing or decreasing sail efficiency. Most often practiced with the topsails by only partially hoisting the yard to which they were attached, this method of speed control was used most effectively for station-keeping in fleets."

The efficiency of the square sails, and hence the speed of the ship, could also be controlled by the braces, the lines which controlled the movement of the yards in the horizontal plane. At one extreme, with the wind right aft and the yards braced square, the wind hits the sails at ninety degrees. At the other extreme, if the wind is coming from

" For examples of this in use, see Barrington to the Bosun of the *Romney* 3 June 1748, Bonner-Smith, (ed.), *Barrington Papers I*, 39; Anderson, (ed.), *Allin Journals*, 1, 57-9.
" *Palliser Trial*, 44.
The Northern Mariner/Le marin du nord

Fig. 4: M. Myers in Harland, J.H., Seamanship in the Age of Sail (London, 1985), 150.

Fig. 5: The foremast is shivered, while the main and mizen fill. After M. Myers in Harland, J.H., Seamanship in the Age of Sail (London, 1985), 192

abeam, the sails, though set, can be rendered impotent by bracing the yards square. The square sails would then be in line with the direction of the wind and would not fill, a condition known as being "shivered" or "feathered" because of the action of the wind on the sail (Fig. 5). In this way the braces could be used to spill or catch wind in any situation as long as the braces had not been damaged, and its effects were immediate.

Bracing the yards not only allowed the square sails to be shivered, however; they could also be braced right round and "backed" with the wind acting on the front of the sail and imparting a force astern as effectively as it could a force ahead. This technique could be utilised in a number of ways as the captain chose to back partially or fully the sails on any, or indeed all, of the three masts.

Backing the sails on one of the masts would enable a captain to control the speed of his ship, using the backed mast as a brake or accelerator pedal. In practice, the most effective way of achieving control while maintaining good momentum was to back the mizen topsail. Sir Charles Douglas, commander of the Stirling Castle at the battle of Ushant in 1778 called this the "usual method" of controlling speed when in formation, and Admiral Gardner testified that he "generally shivered" the mizentopsail when in action. There are numerous further references from throughout the eighteenth century to ships going into action with the mizen topsail aback. With the mizenmast backed, the ship would feel the want of her after sail and would tend to point downwind much more easily than if the more centrally placed maintopsail or indeed the foretopsail was backed. In the latter cases, the ship tended to keep to the wind, and was thus much harder to get back underway and hence under command of her helm, the captain often having to shiver the mainsail to allow the ship to fall off sufficiently to gather way. In backing

---

15 Keppel Trial, 399.
16 Vice-Admiral Sir Alan Gardner, Minutes of the Proceedings at a Court Martial, Assembled for the Trial of Anthony James Pye Molloy, Esq., Captain of His Majesty's Ship Caesar, (London, 1795), 38.
19 National Maritime Museum, Greenwich, RUSI/NM/5/A. A dialogue between volunteers, containing account of ship's complement, officers, duties of crew, etc, 1742.
The Capability of Sailing Warships: Manoeuvrability

the mizen topsail, a ship in effect adopted a crouching position of controlled aggression from which it could react with power, and manoeuvre with precision, as the need arose. In practice, any or all of these methods were used to increase or reduce the speed of the ship according to circumstances. In his court martial, Captain Molloy gave a detailed impression of how all these methods of speed control could be used in combination: "hauling up one clew at a time of the mainsail, then the foresail to check speed, before backing the mizentopsail, then eventually had to back the maintopsail."

Not only could a sailing warship thus slow herself down by backing her sails, but it had the peculiar advantage of being able to impart instantly an exact and opposite force astern to that which drove it ahead by backing the yards of one of the masts, while leaving the other mast with the sails full; a process known as "heaving to." With the rig thus balanced, the backed mainmast forcing the ship astern at the same time as the full foremost drove her ahead, the ship was in a state of equilibrium. A sailing ship hove to was thus not simply in "neutral" and adrift, but in a state of controlled immobility.

Methods of heaving to varied, since either the foremast or the mainmast could be backed. Harland claimed that backing the main was by far the commonest method in men of war, but practice seems to have varied over time. The fifteenth article of the General Printed Fighting Instructions is explicit that the fleet is to bring to with its headsails to the mast, but this instruction was then amended in the last quarter of the eighteenth century, when ships were ordered to bring to with their main topsail to the mast. No doubt this was preferred for the same reasons that the mizen mast was used to control speed.

This ability to control a ship by backing and filling the sails of the masts in relation to each other was peculiar to the square-rigged ship, and its advantages were not lost on contemporaries. In his Treatise on Practical Seamanship (1787), Hutchinson is careful to discuss this as a particular advantage of square-riggers over vessels rigged purely fore and aft. The principal benefit was in tight control of speed. A sailing warship was at a considerable disadvantage if stationary, as it took some time to gain the momentum necessary to respond to the helm or even to hold a course. In the words of Admiral Rodney, the only way for a ship to be on her guard "is to be on easy sail, and ready to make more sail, bear away, or wear as occasion may require." Therein lay the importance of heaving to. In his trial in 1757 Byng and several of his captains acknowledged that a ship even with her maintopsail to the mast would still have steerage way, and some years later, Captain Young was explicit that the Sandwich retained steering way even with "her topsails lowered down on the caps and the yards braced contrary ways." By heaving to, headway could be reduced in a controlled fashion without actually losing that all-important momentum: a most effective tool for station keeping in fleets and for combat.

---

20 Molloy Trial, 48.
21 Harland, Seamanship, 226.
24 W. Hutchinson, A Treatise on Practical Seamanship, 2 (ed.) (Liverpool, 1787), 225.
25 Rodney’s notes in his copy of Clerk’s Naval Tactics, quoted in H.B. Douglas, Naval Evolutions: A Memoir, Containing a Review and Refutation of the Principle Essays and Arguments Advocating Mr. Clerk’s Claims in Relation to the Manoeuvre of 12 April 1782 (London, 1832), 2 Appendix I.
26 Byng Trial, 84,169,249.
Backing the sails to impart a force astern could also be used to create sternway. Making sternway has had limited coverage in the mainstream of maritime history and what press it has received has been bad. In fact, sailing astern was not an unexpected trick nor a risky manoeuvre, but an everyday occurrence with its own advantages, used in all aspects of ship manoeuvre and not least during battle.

Sternway was often used when weighing anchor and was fully exploited in the process of tacking and boxhauling, the very advantage of the latter being the result of driving the stern hard into the wind to recover ground lost through a failed tack. A vessel with sternway went round much quicker as the full force of the water acted more directly on the rudder. During fleet battle sternway was particularly useful when fighting in line. At Malaga in 1704, Shovell in the *Barfleur*, accompanied by the *Namur*, sailed astern under backed topsails to support Rooke. At Cuddalore in 1758, the *Cumberland* backed two or three times astern to allow more room to wear nearer to the enemy. In 1782 at St. Kitts, Cornwallis threw back his topsails in order to manoeuvre his ship into a position whereby he could fill the gap that had opened in the British line, thus thwarting the attempt of de Grasse to cut the British line in the three-decker *Ville de Paris*?

There was certainly some risk in sailing astern as the rig was primarily designed for pressure to be applied in a forward direction and were supported down and aft by the shrouds and backstays. Shipwrights and riggers were, however, only too aware of how often sails were backed or a ship might need to make sternway, and the rig was set up accordingly. The forestays which supported the staysails and headsails, and the bobstay which secured the bowsprit provided the masts with adequate forward support for the sails to be backed and the ship sailed astern for limited periods. (Fig. 6)

---


---


---


---


---


---


---

TNA, ADM 1/2010 Kempenfelt to Lord Colvill 23 July 1758.

---

In fact contemporary concerns about damage incurred whilst making sternway were directed at the rudder, rather than the rig, and even then only when it was blowing hard. There is also reason to believe that backing sails was not the only way that a ship might make stern board. At his court martial in 1746, Captain Ambrose of the *Rupert* described how, at the battle of Toulon with the wind too large to back his topsails, he repeatedly yawed his ship, putting the helm alternately hard over in each direction in order to make sternway. Unfortunately, he offers no explanation as to how this might be effective.

So far we have seen how the sails could be manipulated to control drive both ahead and astern, but the advantages of sails did not end there. There were many sails on a man of war and each one provided a certain strength and direction of pressure through the rig to the hull of the ship. The headsails, for example, set fore and aft, provided a lifting and a lateral pressure to the bows. The huge topsails were the main agents of drive, while the mizzen gaff or lateen, also set fore and aft, gave lateral control to the stern. This list, incomplete as it is, still gives an indication of how the sails would act on the hull in a variety of different ways. By setting sails in different parts of the rig, pressure would be brought to bear on different parts of the hull and in different directions. The sails thus not only provided drive, also shaped and described the course of the ship. Simply put, a ship could manoeuvre using her sails.

The basic principle of levers and moments ensured that the bows of the ship could be turned as easily by hoisting one or more headsails or the spritsail as by using the rudder. At the 1779 court martial after the battle of Ushant, an officer aboard the *Cumberland* recalled how she edged downwind by setting the foresails and shivering the after sails, and the Master of the *Weymouth*, to the lee of the now descending *Cumberland* avoided her simply by backing the headsails to pay the ship's head off. For some, the largely unpopular spritsail was even favoured for this purpose as it "threw the ship's head off the wind, better than a bowsprit full of jibs," and was particularly advantageous for wearing.

Indeed the efficiency of sails for manoeuvre should not be underestimated. The efficiency of a sailing ship's rudder was superior to that of an auxiliary steamship as, in the latter case, a proportion of the flow of water that was supposed to pass the rudder was lost in the aperture between the sternpost and the rudder. Yet the power of the sails was in fact sufficient to drive a ship against the helm: the *Cumberland*, notorious for an imbalanced rig, always tended to point to wind despite the rudder being put hard over. Both Kempenfelt and Pocock complained about this to the Admiralty in 1758 because of the disruption she caused in fleet cohesion; *Cumberland* was still causing consternation among naval officers twenty years later at the battle of Ushant.

Use of the sails in conjunction with the rudder would produce a sharp, exaggerated turn ideal for manoeuvring in small areas or for avoiding collision. The ability to do this led

---


*Brereton Trial*, 78.

Harland, *Seamanship*, 70.

TNA, ADM 1/2010 Kempenfelt to Lord Colvill 23 July 1758; TNA, ADM 1/161 Pocock to J. Clevland 22 July 1758.

Nathaniel Boteler, a commentator on sea warfare in the late seventeenth century, to describe warships as capable of being "nimble and agile" - two adjectives that would not be traditionally associated with such ships, and a valuable reminder that contemporaries did not necessarily consider themselves "limited" by wind dependence in the way that the modern historian so often believes them to be. This potential for agility was of significant practical value in battle as a ship could fire one broadside, yaw, and then fire the other in short order. It became very difficult, therefore, for an enemy to "hide" on the bow or quarter unmolested.

The ability of a captain to use his sails to steer his ship, or to augment the action of the rudder was an important factor in sailing warfare. It increased the options available. A ship sailing close-hauled that suddenly needed to point her bows down wind could do so by putting the helm hard over, or by backing the foremast. Similarly, a ship wanting to point up to wind could do so by putting the helm to lee or by using the sparker to drive the head up to wind. Most significantly, a sailing warship was not entirely reliant on its rudder and could be swung around without headway: a rare luxury indeed. Before the introduction of Voith Schneider technology and, most recently, the advent of bow thrusters, this has only been possible in maritime history in two other instances: by oared galleys and paddle steamers.

This discussion has centred so far on the use of sails to control speed and direction, but even canvas was not strictly necessary to retain momentum and manoeuvrability. The windage of the hull and rigging caused substantial leeway, and leeway was not always an enemy. It was a common ruse of war to cruise large or before the wind with no sail set as a means of maintaining some headway, while remaining invisible to eyes scanning the horizon for sails. Even wind-dependence, the one bastion that maritime historians have clung to as the defining characteristic of sailing warships, is not sustainable as an absolute virtue. From Mahan's claim in his introduction to The Influence of Sea Power on History (Boston, 1890) that the sailing warship "must remain motionless when the wind fails," to Tunstall's similar view that, in a calm, the fleet could not be moved and, most recently, in Depeyre's description of the wind as "[la] force motrice qui rend tout movement du navire possible," historians of sailing warfare have overlooked much of significance in sailing warship capability. It is a paradox, and indeed the principal cause of our misunderstanding, that to appreciate fully all of the nuances and subtleties of sailing warship capability, the historian must look beyond the sails.

Thus captains could harness currents and tide to provide drive. "Drifting" was an art form in its own right. The strength of a current was dependent on the contortions of the coast or river bank, the contours of the sea bottom and the lunar cycle, and had to be "read" before it could be taken advantage of. The effects of drift and current were also dependent on a ship's position in relation to that current: a ship broadside to was more susceptible to a current than one that met the current bows or stern on. It is, therefore, quite understandable that Gower pays professional respect to the skill of the Ganges pilots who drifted the largest...
vessels down the river using the bower anchor for control," but it should not be forgotten that manoeuvring a ship in a current, and using the current itself to manipulate and manoeuvre the ship, was part and parcel of seafaring and sailing warfare. One of the most peculiar examples in practice can be found in Cochrane's *Autobiography of a Seaman* (1860) where he described how a large portion of the French fleet, panicked by an albeit clumsy attack of fireships the previous night, had run aground on the Isle d'Oléron. Frustrated by the unwillingness of his commander, Lord Gambier, to bring the vulnerable French fleet to action, Cochrane deliberately drifted the *Impératrice* toward the grounded enemy. He explains his movements thus: "I did not venture to make sail, lest the movement might be seen from the flagship [his own], and a signal of recall should defeat my purpose of making an attack; the object of this being to compel the commander-in-chief to send vessels to our assistance, in which case I knew their captains would at once attack the ships which had not been allowed to heave off and escape."

A ship could further manoeuvre without headway or wind by running springs out to the anchor cable and using the anchor as a turning point. By hauling or slacking off the springs a ship was able to move towards or away from the anchor and yaw sharply, entirely independent of the wind. This was particularly useful for freeing a ship that had run aground and for casting anchor in a fleet, when sharp turns independent from the wind were necessary to minimise the likelihood of collision. It was also used in battle. In an engagement with a French frigate in the spring of 1746, Captain Noel anchored with a spring on his cable, his foretopsail tyes and most of his braces shot away. Although crippled in the rig, this allowed him to salvage a good degree of control and rake his antagonist "every time he put about." Samuel Hood’s action at St. Kitts in January 1782 is perhaps the most masterful example of the technique being used in a fleet action. Outnumbered and outgunned, Hood nevertheless resolved to occupy the anchorage so recently deserted by de Grasse. Once anchored, and with springs run out to their anchor cables, Hood’s fleet were able to yaw and present their broadsides at will, and with no hands needed for sail handling, more attention could be paid to the gunnery.

Even without the help of currents and tides, canvas or anchors, a ship could still move. Francis Liardet, a captain with thirty-three years experience in the Royal Navy and the author of the highly detailed *Professional Recollections on Points of Seamanship* (1849), was quite certain that the action of the swell and the “formation of a ship’s bottom” caused a ship to forge ahead even in a total calm - a fact so common, he claims, that “every seaman knows.” He goes on to recommend that ships dismasted in fleet action should keep their heads towards each other, thus preventing separation.” White, in his *Naval Researches* (1830) agreed and goes as far as to claim that the only way of actually stopping a ship was to place another directly in its course. “It seems, therefore, to have been rare indeed for a ship to be motionless in a seaway, and as it was generally accepted that warships had steerage way from as little as one knot,” there was almost always some degree of

---

Gower, Treatise on Seamanship, 62-3.
For an example of this being done in practice, see Anderson, (ed.), *Allin Journals*, I, 71,184-5.
Howe to S. Barrington 15 March 1762, Bonner-Smith, (ed.), *Barrington Papers*, I, 364.
TNA, ADM 1/2217 T. Noel to T. Corbett 4 May 1746.
White, *Naval Researches*, 23.
Byng Trial, 226.
The manoeuvrability of the sailing warship, therefore, has been much maligned, not least because the problems of windward performance are more widely known, and it is easy to cast a negative glow on the separate subject of manoeuvrability. A skilful captain with a well-trained crew could go both ahead and astern, yaw and accelerate and decelerate with precision and subtlety as the occasion demanded. A ship did not necessarily need headway, nor indeed wind, to manoeuvre. These skills were most in evidence, and, indeed, most remarkable, when they were used in conjunction with each other to manipulate a warship in the narrow confines of a tideway. Through careful backing and filling of the sails to make headway or sternway, and using a tremendously complex combination of sails and anchor, rudder, tide, leeway and drift to steer the ship, a skilful master could negotiate the most intricate of river courses. The future Admiral Sir Thomas Byam Martin, as a boy travelling all the way up the Thames from Gravesend, was so deeply impressed by the skill of the pilot and the motion of the vessel that he later lamented in his memoirs: "...alas! Steamers are pushing aside the beautiful movements of a sailing ship." The subtlety, complexity and range of those "beautiful movements," have for too long been overlooked and consigned to academic obscurity, yet they are fundamental to any description of the operational characteristics of the sailing Navy.